ERRATA: Airplane Design Part I

Copyright © 1985-89 by Dr. Jan Roskam Year of Print, 1985, 1989 (Errata Revised November 17, 2014)

Please check the website www.darcorp.com for updated errata

line 6 from bottom replace 1,000 nm with 1,000 sm

page 61, Table 2.19 Take-off and Landing: groundrun of less than 2,400 ft.

page 69, Eqn. (2.23) $D = (W_{PL} + W_{CREW}) + W_{PL_{exp}}$

Where $W_{p_{\text{exp}}}$ is the weight of the expended payload.

(i.e., Missiles, bombs, etc.)

page 98, line 8 from bottom replace $C_{L_{TO_{\max}}}$ by $C_{L_{\max}}$

page 106, line 2 replace four factors: with five factors:

page 115, Eqn. (3.18) $V_A = 1.1V_{s_{PA}}$

page 138, line 3 from bottom Replace x0.85 by :1.1

page 150, Eqn. (3.32) $RC_h = RC_0(1 - h/h_{abs})$

page 152, Eqn. (3.38) $sin\gamma = \frac{T}{W} \left[P_{dl} - \sqrt{P_{dl}^2 - P_{dl} + \left(1 + \left(\frac{L}{D}\right)^2\right)^{-1} \left(\frac{T}{W}\right)^{-2}} \right]$

page 186, Section 3.7.4.2

line 3 ... groundrun as < 2,400 ft.

line 7 $S_L = 1.9 \times 2,400 = 4,560 \text{ ft.}$

From Figure 3.16 $S_L = 4,500/0.6 = 7,600 \text{ ft.}$

From Figure 3.17 this yields: $V_A^2 = 25,000 \text{ kts}^2$.

$$V_A = \{21,200(1.3/1.2)^2\}^{1/2} = 158 kts$$
 should be
 $V_A = \{25,000\}^{1/2} = 158 kts$